Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36294649

RESUMO

Beauveria pseudobassiana RGM 2184 has shown 80% maximum efficacy against the pest Lobesia botrana in the autumn and winter seasons. This suggests that the strain possesses an interesting battery of enzymes that are cold-adapted to penetrate the thick and hydrophobic cocoon of L. botrana. In this study, screening of the proteolytic, lipolytic, and chitinolytic activity of enzyme extracts secreted by the RGM 2184 strain was carried out in various culture media. The enzyme extracts with the highest activity were subjected to zymography and mass spectrometry. These analyses allowed the identification of two proteases, two lipases, and three chitinases. Comparative analysis indicated that the degree of similarity between these enzymes was substantially reduced when the highest degree of taxonomic relatedness between RGM 2184 and the entomopathogenic fungus strain was at the family level. These results suggest that there is a wide variety of exoenzymes in entomopathogenic fungi species belonging to the order Hypocreales. On the other hand, exoenzyme extract exposure of cocoons and pupae of L. botrana provoked damage at 10 °C. Additionally, an analysis of the amino acid composition of the RGM 2184 exoenzyme grouped them close to the cold-adapted protein cluster. These results support the use of this strain to control pests in autumn and winter. Additionally, these antecedents can form a scaffold for the future characterization of these exoenzymes along with the optimization of the strain's biocontrol ability by overexpressing them.

2.
Microorganisms ; 10(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35456723

RESUMO

The B. safensis RGM 2450 and B. siamensis RGM 2529 strains were isolated from the rhizosphere of plants presenting resilience to abiotic and biotic stress conditions. To understand the implications of bacteria in resilience, a genomic and experimental analysis was carried out on their biostimulant and phytopathogenic antagonist properties. Genome analyses of both strains indicated that they have the potential to synthesize bioactive compounds such as the battery of non-ribosomal peptides, polyketides, extracellular enzymes and phytohormones. These results were consistent with the antagonistic activities of both strains against the phytopathogens Botrytis cinerea, Colletotrichum acutatum, Fusarium oxysporum and Phytophtora cinnamomi. They also showed the capacity to solubilize phosphorus, fix nitrogen and produce indole acetic acid. This was observed in tomato seedlings grown from seeds inoculated with the mixture of strains which presented significantly greater length as well as wet and dry weight in comparison with the treatments individually inoculated with each strain and the control. Accordingly, the combination of B. safensis RGM 2450 and B. siamensis RGM 2529 showed synergistic biostimulant activity. These findings contribute new knowledge of the genomic and metabolomic properties taking part in the symbiotic interactions between these strains and the plants and uphold the combined use of both strains as a biostimulant.

3.
J Fungi (Basel) ; 8(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35330256

RESUMO

The entomopathogenic fungus Beauveria pseudobassiana strain RGM 2184 can reach a maximum efficacy of 80% against the quarantine pest Lobesia botrana in field assays. In this study, the RGM 2184 genome was sequenced, and genome mining analyses were performed to predict the factors involved in its insecticidal activity. Additionally, the metabolic profiling of the RMG 2184 culture's supernatants was analyzed by mass spectrometry, and the insecticidal activity from one of these extracts was evaluated in Galleria mellonella larvae. The genome analysis resulted in 114 genes encoding for extracellular enzymes, four biosynthetic gene clusters reported as producers of insecticidal and bactericidal factors (oosporein, beauvericin, desmethylbassianin, and beauveriolide), 20 toxins, and at least 40 undescribed potential biocontrol factors (polyketides and nonribosomal peptides). Comparative genomic analysis revealed that 65-95% of these genes are Beauveria genus-specific. Metabolic profiling of supernatant extracts from RGM 2184 cultures exhibited secondary metabolites such as beauveriolide, oosporein, inflatin C, and bassiatin. However, a number of detected metabolites still remain undescribed. The metabolite extract caused 79% mortality of Galleria mellonella larvae at 28 days. The results of this research lay the groundwork for the study of new insecticidal molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...